

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

Applications of Advanced Mathematics (C4)

Paper A

Monday

/ **12 JUNE 2006** Afternoon 1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

NOTE

• This paper will be followed by **Paper B: Comprehension.**

[6]

Section A (36 marks)

1 Fig. 1 shows part of the graph of $y = \sin x - \sqrt{3}\cos x$.

Fig. 1

Express $\sin x - \sqrt{3}\cos x$ in the form $R \sin (x - \alpha)$, where R > 0 and $0 \le \alpha \le \frac{1}{2}\pi$.

Hence write down the exact coordinates of the turning point P.

2 (i) Given that

$$\frac{3+2x^2}{(1+x)^2(1-4x)} = \frac{A}{1+x} + \frac{B}{(1+x)^2} + \frac{C}{1-4x},$$

where A, B and C are constants, find B and C, and show that A = 0. [4]

(ii) Given that x is sufficiently small, find the first three terms of the binomial expansions of $(1+x)^{-2}$ and $(1-4x)^{-1}$.

Hence find the first three terms of the expansion of $\frac{3+2x^2}{(1+x)^2(1-4x)}$. [4]

3 Given that $\sin(\theta + \alpha) = 2\sin\theta$, show that $\tan\theta = \frac{\sin\alpha}{2 - \cos\alpha}$.

Hence solve the equation $\sin(\theta + 40^\circ) = 2\sin\theta$, for $0^\circ \le \theta \le 360^\circ$. [7]

- 4 (a) The number of bacteria in a colony is increasing at a rate that is proportional to the square root of the number of bacteria present. Form a differential equation relating *x*, the number of bacteria, to the time *t*.
 - (b) In another colony, the number of bacteria, *y*, after time *t* minutes is modelled by the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{10000}{\sqrt{y}}.$$

Find y in terms of t, given that y = 900 when t = 0. Hence find the number of bacteria after 10 minutes. [6]

5 (i) Show that $\int x e^{-2x} dx = -\frac{1}{4} e^{-2x} (1+2x) + c.$ [3]

A vase is made in the shape of the volume of revolution of the curve $y = x^{\frac{1}{2}}e^{-x}$ about the x-axis between x = 0 and x = 2 (see Fig. 5).

(ii) Show that this volume of revolution is $\frac{1}{4}\pi \left(1 - \frac{5}{e^4}\right)$. [4]

Section B (36 marks)

6 Fig. 6 shows the arch ABCD of a bridge.

The section from B to C is part of the curve OBCE with parametric equations

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$
 for $0 \le \theta \le 2\pi$,

where *a* is a constant.

- (i) Find, in terms of *a*,
 - (A) the length of the straight line OE,
 - (*B*) the maximum height of the arch. [4]

(ii) Find
$$\frac{dy}{dx}$$
 in terms of θ . [3]

The straight line sections AB and CD are inclined at 30° to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the *x*-axis. BF is parallel to the *y*-axis.

(iii) Show that at the point B the parameter θ satisfies the equation

$$\sin\theta = \frac{1}{\sqrt{3}}(1 - \cos\theta).$$

Verify that $\theta = \frac{2}{3}\pi$ is a solution of this equation.

Hence show that $BF = \frac{3}{2}a$, and find OF in terms of *a*, giving your answer exactly. [6]

(iv) Find BC and AF in terms of *a*.

Given that the straight line distance AD is 20 metres, calculate the value of a. [5]

[4]

[4]

Fig. 7 illustrates a house. All units are in metres. The coordinates of A, B, C and E are as shown. BD is horizontal and parallel to AE.

- (ii) Find a vector equation of the line BD. Given that the length of BD is 15 metres, find the coordinates of D. [4]
- (iii) Verify that the equation of the plane ABC is

$$-3x + 4y + 5z = 30$$

Write down a vector normal to this plane.

(iv) Show that the vector $\begin{pmatrix} 4\\3\\5 \end{pmatrix}$ is normal to the plane ABDE. Hence find the equation of the plane ABDE. [4]

(v) Find the angle between the planes ABC and ABDE.

[Candidate Name	Centre Number	Candidate Number	
				OCR
				RECOGNISING ACHIEVEMENT

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

12 JUNE 2006

MEI STRUCTURED MATHEMATICS

4754(B)

Applications of Advanced Mathematics (C4)

Paper B: Comprehension

Monday

Afternoon

Up to 1 hour

Additional materials: Rough paper MEI Examination Formulae and Tables (MF2)

TIME Up to 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces at the top of this page.
- Answer **all** the questions.
- Write your answers in the spaces provided on the question paper.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The insert contains the text for use with the questions.
- You may find it helpful to make notes and do some calculations as you read the passage.
- You are **not** required to hand in these notes with your question paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 18.

This question paper consists of 4 printed pages and an insert.

For

Use

2 Examiner's 1 The marathon is 26 miles and 385 yards long (1 mile is 1760 yards). There are now several men who can run 2 miles in 8 minutes. Imagine that an athlete maintains this average speed for a whole marathon. How long does the athlete take? [2] 2 According to the linear model, in which calendar year would the record for the men's mile first become negative? [3] Explain the statement in line 93 "According to this model the 2-hour marathon will never be 3 run." [1]

	3	For Examiner's
4	Explain how the equation in line 49,	Use
	$R = L + (U - L)e^{-kt},$	
	is consistent with Fig. 2	
	(i) initially, [3]	
	(ii) for large values of <i>t</i> . [2]	
	(i)	
	(ii)	

[Questions 5 and 6 are printed overleaf.]

